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A nonvanishing Lyapunov exponentl1 provides the very definition of deterministic chaos in the solutions
of a dynamical system; however, no theoretical mean of predicting its value exists. This paper copes with the
problem of analytically computing the largest Lyapunov exponentl1 for many degrees of freedom Hamil-
tonian systems as a function of«5E/N, the energy per degree of freedom. The functional dependence
l1(«) is of great interest because, among other reasons, it detects the existence of weakly and strongly chaotic
regimes. This aim, the analytic computation ofl1(«), is successfully reached within a theoretical framework
that makes use of a geometrization of Newtonian dynamics in the language of Riemannian differential geom-
etry. An alternative point of view about the origin of chaos in these systems is obtained independently of the
standard explanation based on homoclinic intersections. Dynamical instability~chaos! is here related to cur-
vature fluctuations of the manifolds whose geodesics are natural motions and is described by means of the
Jacobi–Levi-Civita equation~JLCE! for geodesic spread. In this paper it is shown how to derive from the
JLCE an effective stability equation. Under general conditions, this effective equation formally describes a
stochastic oscillator; an analytic formula for the instability growth rate of its solutions is worked out and
applied to the Fermi-Pasta-Ulamb model and to a chain of coupled rotators. Excellent agreement is found
between the theoretical prediction and numeric values ofl1(«) for both models.@S1063-651X~96!11611-1#

PACS number~s!: 05.45.1b, 02.40.2k, 05.20.2y

I. INTRODUCTION

During the past two decades or so, there has been growing
evidence of the independence of the two properties ofdeter-
minismandpredictabilityof classical dynamics. In fact, pre-
dictability for arbitrarily long times requires also thestability
of the motions with respect to variations, however small, of
the initial conditions.

With the exception of integrable systems, the generic situ-
ation of classical dynamical systems describing, say,N par-
ticles interacting through physical potentials isinstability of
the trajectories in the Lyapunov sense. Nowadays such an
instability is called intrinsic stochasticity, or chaoticity, of
the dynamics and is a consequence of nonlinearity of the
equations of motion.

Like any other kind of instability, dynamical instability
brings about the exponential growth of an initial perturba-
tion; in this case it is the distance between a reference tra-
jectory and any other trajectory originating in its close vicin-
ity that locally grows exponentially in time. Quantitatively,
the degree of chaoticity of a dynamical system is character-

ized by the largest Lyapunov exponentl1 that, if positive,
measures the mean instability rate of nearby trajectories av-
eraged along a sufficiently long reference trajectory. The ex-
ponentl1 also measures the typical time scale of memory
loss of the initial conditions.

Let us recall that if

ẋi5Xi~x1•••xN! ~1!

is a given dynamical system, i.e., a realization in local coor-
dinates of a one-parameter group of diffeomorphisms of a
manifoldM , that is, off t:M→M , and if we denote by

j̇ i5J_k
i @x~ t !#jk ~2!

the usual tangent dynamics equation, i.e., the realization of
the mappingdf t:TM→TM, where TM is the tangent
bundle ofM and @J_k

i # is the Jacobian matrix of@Xi #, then
the largest Lyapunov exponentl1 is defined by

l15 lim
t→`

1

t
ln

ij~ t !i
ij~0!i ~3!

and, by settingL@x(t),j(t)#5jTJ @x(t)#j/jTj[jTj̇/jTj5
1
2(d/dt)ln(j

Tj), this can be formally expressed as a time av-
erage

l15 lim
t→`

1

2tE0
t

dtL@x~t!,j~t!#. ~4!
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Even thoughl1 is the most important indicator of chaos of
classical@1# dynamical systems, it is used only as a diagnos-
tic tool in numerical simulations. With the exception of a few
simple discrete-time systems~maps of the interval!, no theo-
retical method exists to computel1 @2#. This situation re-
veals that a satisfactory theory of deterministic chaos is still
lacking, at least for systems of physical relevance.

In the conventional theory of chaos, dynamical instability
is caused by homoclinic intersections of perturbed separa-
trices; however, this theory has some limitations.~i! It needs
action-angle coordinates.~ii ! It works in conditions of weak
perturbation of an integrable system.~iii ! To compute quan-
tities such as Mel’nikov integrals one needs the analytic ex-
pressions of the unperturbed separatrices: at largeN this is
hopeless; moreover, the generalization of the Poincare´-
Birkhoff theorem is still problematic atN.2. ~iv! Finally,
there is no computational relationship between homoclinic
intersections and Lyapunov exponents. Therefore this theory
seems to be inadequate to treat chaos in Hamiltonian systems
with many degrees of freedom at arbitrary degree of nonlin-
earity, with potentials that can be hardly transformed in
action-angle coordinates, not to speak of accounting for phe-
nomena such as the transition from weak to strong chaos in
Hamiltonian systems@3,4#. Motivated by the need of under-
standing this transition from weak to strong chaos, we have
recently proposed@5–10# to tackle Hamiltonian chaos in a
different theoretical framework. This method makes use of
the well-known possibility of formulating Hamiltonian dy-
namics in the language of Riemannian geometry so that the
stability or instability of a geodesic flow depends on curva-
ture properties of some suitably defined manifold.

In the early 1940s, Krylov already got a hold of the po-
tential interest of this differential-geometric framework to
account for dynamical instability and hence for phase-space
mixing @11#. The followup of his intuition can be found in
abstract ergodic theory@12# and in a very few mathematical
works concerning the ergodicity of geodesic flows of physi-
cal interest@13,14#. However, Krylov’s work did not entail
anything useful for a more general understanding of chaos in
nonlinear Newtonian dynamics, because one soon runs into
unsurmountable mathematical obstacles. By filling certain
mathematical gaps with numerical investigations, these ob-
stacles have been overcome and a rich scenario emerged
about the relationship between stability and curvature.

Based on the so-obtained information, the present paper
aims at bringing a substantial contribution to the develop-
ment of a Riemannian theory of Hamiltonian chaos. The
contribution consists of a method to analytically compute the
largest Lyapunov exponentl1 for physically meaningful
Hamiltonian systems of arbitrary large number of degrees of
freedom. A preliminary and limited account of the results
presented here can be found in Ref.@7#.

The paper is organized as follows. Section II is a sketchy
presentation of the geometrization of Newtonian dynamics.
Section III contains the derivation of an effective stability
equation from the Jacobi–Levi-Civita equation for geodesic
spread and an analytic formula forl1. Section IV contains
the application of the general result to the practical compu-

tation ofl1 in the Fermi-Pasta-Ulamb model and in a chain
of coupled rotators. Some concluding remarks are presented
in Sec. V.

II. GEOMETRIZATION OF NEWTONIAN DYNAMICS

Let us briefly recall how Newtonian dynamics can be re-
phrased in the language of Riemannian geometry. We shall
deal with standard autonomous systems, i.e., described by
the Lagrangian function

L5T2V5 1
2 ai j q̇

i q̇ j2V~q1 , . . . ,qN!, ~5!

so that the Hamiltonian functionH5T1V[E is a constant
of motion.

According to the principle of stationary action, in the
form of Maupertuis, among all the possible isoenergetic
pathsg(t) with fixed end points, the paths that make the first
variation of the action functional

A5E
g~ t !

pidqi5E
g~ t !

]L
]q̇i

q̇idt ~6!

vanish are natural motions. As the kinetic energyT is a ho-
mogeneous function of degree 2, we have 2T5q̇i]L/]q̇i and
Maupertuis’s principle reads

dA5dE
g~ t !

2Tdt50. ~7!

The configuration spaceM of a system withN degrees of
freedom is anN-dimensional differentiable manifold and the
Lagrangian coordinates (q1 , . . . ,qN) can be used as local
coordinates onM . The manifoldM is naturally given a
proper Riemannian structure. In fact, let us consider the ma-
trix

gi j52@E2V~q!#ai j ~8!

so that~7! becomes

dE
g~ t !

2Tdt5dE
g~ t !

~gi j q̇
i q̇ j !1/2dt5dE

g~s!
ds50, ~9!

thus natural motions are geodesics ofM , provided we define
ds as its arc length. The metric tensorgJ of M is then de-
fined by

gJ5gi j dq
i
^dqj , ~10!

where (dq1, . . . ,dqN) is a natural base ofTq*M , the cotan-
gent space at the pointq, in the local chart (q1, . . . ,qN).
This is known as a Jacobi~or kinetic-energy! metric. Denot-
ing by ¹ the canonical Levi-Civita connection, the geodesic
equation

¹ġġ50 ~11!

becomes, in the local chart (q1, . . . ,qN),

d2qi

ds2
1G jk

i dq
j

ds

dqk

ds
50, ~12!
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where the Christoffel coefficients are the components of¹
defined by

G jk
i 5^dqi ,¹ jek&5 1

2 g
im~] jgkm1]kgmj2]mgjk!, ~13!

where ] i5]/]qi . Without loss of generality consider
gi j52@E2V(q)#d i j ; from Eq. ~12! we get

d2qi

ds2
1

1

4~E2V! F4]~E2V!

]qj
dqj

ds

dqi

ds

2gi j
]~E2V!

]qj
gkm

dqk

ds

dqm

ds G50 ~14!

and, usingds254(E2V)2dt2, we can easily verify that
these equations yield

d2qi

dt2
52

]V

]qi
i51, . . . ,N, ~15!

which are Newton equations.
As already discussed elsewhere@5,6#, there are other pos-

sibilities to associate a Riemannian manifold to a standard
Hamiltonian system. Among the others we mention a struc-
ture, defined by Eisenhart@15#, that will be used in the fol-
lowing for computational reasons. In this case the ambient
space is an enlarged configuration space-timeM3R2, with
local coordinates (q0,q1, . . . ,qN,qN11), with (q1, . . . ,qN)
PM , q0PR is the time coordinate, andqN11PR is a coor-
dinate closely related to the action; Eisenhart defines a
pseudo-Riemannian non-degenerate metricg

E
onM3R2 as

ds
E

25gmndq
m

^dqn5ai j dq
i
^dqj22V~q!dq0^dq0

1dq0^dqN111dqN11
^dq0.

~16!

Natural motions are now given by the canonical projection
p of the geodesics of (M3R2,gE) on configuration space-
time p:M3R2→M3R. However, among all the geodesics
of gE we must consider only those for which the arc length is
positive definite and given by

ds25gmndq
mdqn52C2dt2 ~17!

or, equivalently, we have to consider only those geodesics
such that the coordinateqN11 evolves according to

qN115C2t1C1
22E

0

t

Ldt, ~18!

whereC andC1 are real constants. Since the values of these
constants are arbitrary, we fixC251/2 in order that
ds25dt2 along a physical geodesic. For a diagonal kinetic-
energy matrixai j5d i j , the nonvanishing components of the
connection¹ are simply

G00
i 52G0i

N115] iV; ~19!

therefore it is easy to check that also the geodesics ofg
E

yield Newtonian equations together with the differential ver-
sions of Eq.~18! and ofq05t ~details can be found in@5,6#!.

III. GEOMETRIC DESCRIPTION
OF DYNAMICAL INSTABILITY

The actual interest of the Riemannian formulation of dy-
namics stems from the possibility of studying the instability
of natural motions through the instability of geodesics of a
suitable manifold, a circumstance that has several advan-
tages. First of all, a powerful mathematical tool exists to
investigate the stability or instability of a geodesic flow: the
Jacobi–Levi-Civita~JLC! equation for geodesic spread. The
JLC equation describes covariantly how nearby geodesics
locally scatter and it is a familiar object in both Riemannian
geometry and theoretical physics~it is of fundamental inter-
est in experimental general relativity!. Moreover, the JLC
equation relates the stability or instability of a geodesic flow
with curvature properties of the ambient manifold, thus
opening a wide and largely unexplored field of investigation,
as far as physical systems are concerned, of the connections
among geometry, topology, and geodesic instability, hence
chaos.

A. Jacobi–Levi-Civita equation for geodesic spread

A congruence of geodesicsis defined as a family of geo-
desics $gt(s)5g(s,t)utPR% that, originating in some
neighborhoodI of any given point of a manifold, are differ-
entiably parametrized by some parametert. Choose a refer-
ence geodesicḡ(s,t0), denote byġ(s) the field of vectors
tangent ats to ḡ, and denote byJ(s) the field of vectors
tangent att0 to the curvesgs(t) at fixed s. The field
J5(]g/]t)t0

is known asgeodetic separation fieldand it

has the propertyLġJ50, whereL is the Lie derivative. Lo-
cally we can measure the distance between two nearby geo-
desics by means ofJ.

The evolution of the geodetic separation fieldJ conveys
information about the stability or instability of the reference
geodesicḡ. In fact, if iJi exponentially grows withs then
the geodesic is unstable in the sense of Lyapunov; otherwise
it is stable.

The evolution ofJ is described by@19#

¹2J~s!

ds2
1R„ġ~s!,J~s!…ġ~s!50, ~20!

known as Jacobi–Levi-Civita equation. HereJ(s)
PTg(s)M ; R(X,Y)5¹X¹Y2¹Y¹X2¹ [X,Y] is the Riemann-
Christoffel curvature tensor;ġ5dg/ds; ¹/ds is the covari-
ant derivative andg(s) is a normal geodesic, i.e., such that
s is the length. In the following we assume thatJ(s) is
normal, i.e.,^J,ġ&50. This equation relates the stability or
instability of nearby geodesics to the curvature properties of
the ambient manifold. If the ambient manifold is endowed
with a metric ~e.g., Jacobi or Eisenhart! derived from the
Lagrangian of a physical system, then stable or unstable
~chaotic! motions will depend on the curvature properties of
the manifold. Therefore it is reasonable to guess that some
averageglobal geometric property will provide information,
at least, about anaveragedegree of chaos of the dynamics
independently of the knowledge of the trajectories that is
independently of the numerical integration of the equations
of motion.

In local coordinates the JLC equation~20! reads
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¹2Ji

ds2
1Rjkl

i dqj

ds
Jk
dql

ds
50, ~21!

whereRjkl
i 5^dqi ,R(e(k) ,e( l ))e( j )& are the components of the

curvature tensor and the covariant derivative is
(¹Ji /ds)5dJi /ds1G jk

i Jkdqj /ds. There areO(N4) of such
components,N5dimM ; therefore, even if this number can
be considerably reduced by symmetry considerations, at
largeN Eq. ~21! appears untractable already at rather small
N. It is worth mentioning that some exception exists. Such is
the case ofisotropicmanifolds for which~21! can be reduced
to the simple form

¹2Ji

ds2
1KJi50, i51, . . . ,N, ~22!

whereK is the constant value assumed throughout the mani-
fold by the sectional curvature.

The sectional curvature of a manifold is the
N-dimensional generalization of the Gaussian curvature of
two-dimensional surfaces ofR3. Consider two arbitrary vec-
torsX,YPTxM , wherexPM is an arbitrary point ofM , and
define

iX`Yi5~ iXi2iYi22^X,Y&!1/2. ~23!

If iX`YiÞ0 the vectorsX,Y span a two-dimensional plane
p,TxM ; then the sectional curvature atx relative to the
planep is defined by

K~X,Y!5K~x,p!5
^R~Y,X!X,Y&

iX`Yi2 , ~24!

which is only a property ofM at x independently ofX,Y
Pp ~Gauss’s theorema egregium!. For an isotropic manifold
K(x,p) is also independent of the choice ofp and thus,
according to Schur’s theorem,K turns out also independent
of xPM .

Unstable solutions of Eq.~22! are of the form

J~s!5w~0!~2K !21/2sinh~A2Ks!, ~25!

once the initial conditions are assigned asJ(0)50 and
dJ(0)/ds5w(0) andK,0. In abstract ergodic theory geo-
desic flows on compact manifolds of constant negative cur-
vature have been considered in classical works@16#. In this
case the quantityA2K, uniform on the manifold, measures
the degree of instability of nearby geodesics.

While Eq. ~22! holds true only for constant curvature
manifolds, a similar form of general validity can be obtained
for JLC equation atN52.

In this low-dimensional case Eq.~21! is exactly rewritten
as

d2J

ds2
1 1

2R~s!J50, ~26!

where a parallel transported frame is used andR(s) is the
scalar curvature. Using a Jacobi metric one finds (N52):
R5nV/W21(¹V)2/W3, with W5E2V, so that for
smooth and binding potentialsR can be negative only where
nV,0, i.e., nowhere for nonlinearly coupled oscillators as

described by the He´non-Heiles model@9# or for quartic os-
cillators @10#. nV,0 is only possible if the potentialV has
inflection points.

Recent detailed analyses of two degrees of freedom sys-
tems@9,10# have shown that chaos can be produced bypara-
metric instability due to a fluctuating positive curvature
along the geodesics. Let us recall that parametric instability
is a generic property of dynamical systems with parameters
that are periodically or quasiperiodically varying in time,
even if for each value of the varying parameter the system
has stable solutions@17#. A harmonic oscillator with periodi-
cally modulated frequency, described by the Mathieu equa-
tion, is perhaps the prototype of such a parametric instability
mechanism.

Numerical simulations have shown that all the informa-
tions about order and chaos obtained by standard means
~Lyapunov exponent and Poincare´ sections! are fully re-
trieved by using Eq.~26!. As in the case of tangent dynam-
ics, Eq.~26! has to be computed along a reference geodesic
~trajectory!.

Let us now cope with the large-N case. It is convenient to
rewrite the JLC equation~21! in the form

¹2J~s!

ds2
1

1

N21
@Ric„ġ~s!,ġ~s!…J~s!2Ric„ġ~s!,J~s!…ġ~s!#

1W„ġ~s!,J~s!…ġ~s!50, ~27!

whereW is the Weyl projective curvature tensor whose com-
ponentsWjkl

i are given by@18#

Wjkl
i 5Rjkl

i 2
1

N21
~Rjldk

i 2Rjkd l
i !, ~28!

and Ric is the Ricci curvature tensor of components
Ri j5Rimj

m . Weyl’s projective tensorW ~not to be confused
with Weyl’s conformalcurvature tensor! measures the devia-
tion from isotropy of a given manifold. For an isotropic
manifoldWjkl

i 50 and we recognize in~27! Eq. ~22!. In fact,

in this case,Rjl q̇
j q̇l /(N21) is just the constant value of

sectional curvature. Recall that the Ricci curvature atxPM
is KR(X(b))5RjlX(b)

i X(b)
l 5(a51

N21K(X(b) ,X(a)), where
X(1) , . . . ,X(N) form an orthonormal basis ofTxM . Hence we
understand that Eq.~27! retains the structure of Eq.~22! up
to its second term, which now has the meaning of a mean
sectional curvature averaged, at any given point, over the
independent orientations of the planes spanned byX(a) and
X(b) ; this mean sectional curvature is no longer constant
alongg(s). The last term of~27! accounts for the local de-
gree of anisotropy of the ambient manifold.

Let us now consider the decomposition for the Jacobi
field J

J~s!5(
i
Ji~s!e~ i !~s! , ~29!

where $e(1)•••e(N)% is an orthonormal system of parallel
transported vectors. In this reference frame it is

¹2J

ds2
5(

i

d2Ji
ds2

e~ i !~s! ~30!
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and the last term of~27! is

W~ ġ,J!ġ5(
j

^W~ ġ,J!ġ,e~ j !&e~ j !

5(
j

KWS ġ,(
i
Jie~ i !D ġ,e~ j !L e~ j !

5(
i , j

^W~ ġ,e~ i !!ġ,e~ j !&Jie~ j ! ; ~31!

the same decomposition applies to the third term of Eq.~27!,
which is finally rewritten as

d2Jj
ds2

1kR~s!Jj1(
i

~wi j1r i j !Ji50 , ~32!

where kR5KR /(N21), wi j5^W(ġ,e( i ))ġ,e( j )& and
r i j5^Ric(ġ,e( i ))ġ,e( j )&/(N21). Of course,kR is indepen-
dent of the coordinate system. The elementswi j still depend
on the dynamics and on the behavior of the vectorse(k)(s).
Thus, in order to obtain a stability equation, for the geodesic
flow, that depends only on average curvature properties of
the ambient manifold, we try to conveniently approximate
thewi j . To this purpose define at any pointxPM the trilin-
ear mappingR8:TxM3TxM3TxM→TxM by

^R8~X,Y,U !,Z&5^X,U&^Y,Z&2^Y,U&^X,Z& ~33!

for all X,Y,U,ZPTxM . It is well known@19# that if and only
if M is isotropic thenR5K0R8, whereR is the Riemann
curvature tensor ofM andK0 is the constant sectional cur-
vature.

Let us now assume that the ambient manifold isquasi-
isotropic, i.e., that it looks like an isotropic manifold after a
coarse graining that smears out all the metric fluctuations,
and let us formulate this assumption by settingR'K(s)R8
and Ric'K(s)g althoughK(s) is no longer a constant. Now
we use~33! to find wi j'dK(s)@^ġ,ġ&^e( i ) ,e( j )&2^e( i ) ,ġ&
3^ġ,e( j )&#, then we use Ric}g andg(ġ,J)50 to findr i j50,
thus Eq.~32! becomes

d2Jj
ds2

1kR~s!Jj1dK~s!Jj50. ~34!

By dK(s)5K(s)2K̄ we denote the local deviation of sec-
tional curvature from its coarse-grained valueK̄, thus
dK(s) measures the fluctuation of sectional curvature along
a geodesic due to the local deviation from isotropy. The
problem is thatdK(s) still depends on a moving plane
p(s) determined byġ(s) andJ(s). In order to get rid of this
dependence, remember that ifxPM is an isotropic point
then the components of the Ricci tensor are
Rlh5(N21)K(x)glh and the scalar curvature is
R5N(N21)K(x). With these quantities one constructs the
Einstein tensorGlh5Rlh2 1

2glhR whose divergence vanishes
identically (Glhu l50), so it is immediately found that if a
manifold consists entirely of isotropic points, then
]K(x)/]xl50 and so]KR(x)/]x

l50, i.e., the manifold is a
space of constant curvature~Schur’s theorem@19#!. Con-
versely, the local variation of the Ricci curvature detects the

local loss of isotropy; thus a reasonable approximation of the
averagevariationdK(s) along a geodesic may be given by
the variation of Ricci curvature.

Next let us modeldK(s) along a geodesic by a stochastic
process. In fact,K(s) is obtained by summing a large num-
ber of terms, each one depending on different combinations
of the components ofJ and on the coordinatesqi . Moreover,
unless we tackle an integrable model, the dynamics is always
chaotic and the functionsqi(s) behave irregularly. By invok-
ing a central-limit-theorem argument, at largeN, dK(s) is
expected to behave, in a first approximation, as a Gaussian
stochastic process. More generally, the probability distribu-
tion P(dK) may be other than Gaussian and in practice it
could be determined by computing its cumulants along a
geodesicg(s).

Now we make quantitative the previous statement, about
using the variation of Ricci curvature along a geodesic to
estimatedK(s), by setting

P~dK !.P~dKR!. ~35!

Both dK anddKR are zero mean variations, so the first mo-
ments vanish. According to~35! the following relation for
the second moments will hold:

^@K~s!2K̄#2&s.
1

N21
Š@KR~s!2^KR&s#

2
‹s , ~36!

where ^&s stands for proper-time average along a geodesic
g(s). Let us comment about the numerical factor on the
right-hand-side of~36!, where a factor 1/N2 might be ex-
pected. At increasingN the mean-square fluctuations ofkR
drop to zero as 1/N becausekR is the mean of independent
quantities; however, this cannot be the case of the mean-
square fluctuations ofK. In fact, out of the sumKR of all the
sectional curvatures, in Eq.~34! only one sectional curvature
is ‘‘picked up’’ from point to point bydK so thatdK re-
mains finite with increasingN. Therefore, as the second cu-
mulant ofdK does not vanish withN, we have to keep finite
the second cumulant ofdKR , which is simply achieved by
properly adjusting the numerical factor in Eq.~36!.

The lowest-order approximation of a cumulant expansion
of the stochastic processdK(s) is the Gaussian approxima-
tion

dK~s!.
1

AN21
^d2KR&s

1/2h~s!, ~37!

whereh(s) is a random Gaussian process with zero mean
and unit variance. Finally, in order to decouple the stability
equation from the dynamics, we replace time averages with
static averages computed with a suitable ergodic invariant
measurem. As we deal with autonomous Hamiltonian sys-
tems, a natural choice is the microcanonical measure on the
constant energy surface of phase space@20#

m}d~H2E!, ~38!

so that Eq.~37! becomes

dK~s!.
1

AN21
^d2KR&m

1/2h~s!. ~39!
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Similarly, kR(s) in Eq. ~34! is replaced bŷ kR&m . In fact, at
large N the fluctuations ofkR , as already noticed above,
vanish as 1/N because the coarse-grained manifold is isotro-
pic, so that we finally have

d2c

ds2
1^kR&mc1

1

AN21
^d2KR&m

1/2h~s!c50, ~40!

wherec stands for any of the componentsJj , since all of
them now obey the same effective equation of motion. The
instability growth rate ofc measures the instability growth
rate of iJi2 and thus provides the dynamical instability ex-
ponent in our Riemannian framework. Equation~40! is a
scalar equation that,independently of the knowledge of dy-
namics, provides a measure of the average degree of insta-
bility of the dynamics itself through the behavior ofc(s).
The peculiar properties of a given Hamiltonian system enter
Eq. ~40! through the global geometric properties^kR&m and
^d2KR&m of the ambient Riemannian manifold~whose geo-
desics are natural motions! and are sufficient to determine
the average degree of chaoticity of the dynamics. Moreover,
according to~38!, ^kR&m and ^d2KR&m are functions of the
energyE of the system, or of the energy density«5E/N,
which is the relevant parameter asN→`, so that from~40!
we can obtain the energy dependence of the geometric insta-
bility exponent.

B. An analytic formula for the largest Lyapunov exponent

By transforming Eq.~20! into Eq. ~40!, the original com-
plexity of the JLC equation has been considerably reduced:
from a tensor equation we have worked out an effective sca-
lar equation formally representing a stochastic oscillator. In
fact, ~40!, with a self-evident notation, is in the form

d2c

ds2
1V~s!c50, ~41!

whereV(s) is a Gaussian stochastic process.
Now, passing from proper times to physical timet, Eq.

~41! simply reads

d2c

dt2
1V~ t !c50, ~42!

where

V~ t !5^kR&m1
1

AN
^d2KR&m

1/2h~ t ! ~43!

if the Eisenhart metric is used@because of the affine param-
etrization of the arc length with time, Eq.~17!#. If Jacobi
metric is used, we have (W5E2V)

V~ t !5^kR&m1K 2
1

4
S Ẇ
W

D 21 1

2

d

dt
S Ẇ
W

D L
m

1
1

AN
^d2KR&m

1/2h~ t ! ~44!

@see Eq. ~64! of @5# and Eq. ~27! of @9##. Note that
d/dt5q̇ j (]/]qj ). Being interested in the large-N limit, we
replacedN21 withN in Eqs.~43! and~44!. Of course, Ricci
curvature has different expressions according to the metric
used.

The stochastic processV(t) is not completely determined
unless its time correlation functionGV(t1 ,t2) is given. We
consider a stationary andd-correlated processV(t) so that
GV(t1 ,t2)5GV(ut22t1u) and

GV~ t !5tsV
2 d~ t !, ~45!

wheret is a characteristic time scale of the process. In order
to estimatet, let us note that for a geodesic flow on a smooth
manifold the assumption ofd correlation ofV(t) will be
reasonable only down to some time scale below which the
differentiable character of the geodesics will be felt. In other
words, we have to think that in reality the power spectrum of
V(t) is flat up to some high-frequency cutoff. Let us denote
it by n!. Therefore, by representing thed function as the
limit for n→` of dn(t)5sin(nt)/pt, a more realistic repre-
sentation of the autocorrelation functionGV(t) in Eq. ~45!
could beGV

! (t)5sV
2 (1/p)@sin(n!t)/n!t#[t!sV

2 dn!
(t), whence

t!51/n!. Notice that *02
` GV(t)dt5tsV

2 and*02
` GV

! (t)dt
5 1

2 t!sV
2 ; thust5t!/2. For practical computational reasons

it is convenient to useGV(t) in the form given by Eq.~45!
~with the implicit assumption thatn! is sufficiently large!;
however, sincen! is finite, the definitiont5t!/2 will be
kept. To estimatet! we proceed as follows. A first time
scale, which we will refer to ast1, is associated with the
time needed to cover the average distance between two suc-
cessive conjugate points along a geodesic@21#. In fact, at
distances smaller than this one the geodesics are minimal and
far from looking like random walks, whereas at each cross-
ing of a conjugate point the separation vector field increases
as if the geodesics in the local congruence were kicked~this
is what happens when parametric instability is active!. From
Rauch’s comparison theorem@19# we know that if sectional
curvatureK is bounded as 0,L<K<H, then the distance
d between two successive conjugate points is bounded by
p/AH,d,p/AL. We need the lower bound estimate that,
for strongly convex domains@22#, is slightly modified to
d.p/2AH.

Hence we definet1 through

t15 K dtdsL d!5 K dtdsL p

2AV01s
V

, ~46!

where^dt/ds& is the average of the ratio between proper and
physical time (̂dt/ds&51 if Eisenhart metric is used! and
the upper boundH of K is replaced by theNth fraction of a
typical peak value of Ricci curvature, which is, in turn, esti-
mated as its averageV0 plus the typical valuedK of the
~positive! fluctuation, i.e., in a Gaussian approximation
dK5s

V
. This time scale is expected to be the most relevant

only as long as curvature is positive and the fluctuations,
compared to the average, are small.

Another time scale, referred to ast2, is related to local
curvature fluctuations. These will be felt on a length scale of
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the order of at leastl51/AsV ~the average fluctuation of
curvature radius!. The scalel is expected to be the relevant
one when the fluctuations are of the same order of magnitude
as the average curvature. When the sectional curvature is
positive ~negative!, lengths and time intervals, on a scalel ,
are enlarged~shortened! by a factor (l 2K/6) @23#, so that the
period 2p/AV0 has a fluctuation amplituded2 given by
d25( l 2K/6)(2p/AV0). ReplacingK by its most probable
valueV0 one gets

t25 K dtdsL d25 K dtdsL l 2V0

6

2p

AV0

.
V0

1/2

s
V

K dtdsL . ~47!

Finally, t in Eq. ~45! is obtained by combiningt1 with t2 as

t2152t!
2152~t1

211t2
21!. ~48!

The present estimate oft is very close, though not equal, to
the one of Ref.@7#.

WheneverV(t) in Eq. ~42! has a nonvanishing stochastic
component the solutionc(t) has an exponentially growing
envelope@24# whose growth rate provides a measure of the
degree of chaos. Let us call this quantity Lyapunov exponent
and denote it byl. In Sec. III B 1 we shall make more pre-
cise the relationship ofl with the conventional largest
Lyapunov exponent. Our exponentl is defined as

l5 lim
t→`

1

2t
ln

c2~ t !1ċ2~ t !

c2~0!1ċ2~0!
, ~49!

wherec(t) is solution of Eq.~42!.
The ratio @c2(t)1ċ2(t)#/@c2(0)1ċ2(0)# is computed

by means of a technique, developed by Van Kampen and
sketched in the Appendix, which is based on the possibility
of computing analytically the evolution of the second mo-
ments ofc and ċ, averaged over the realizations of the sto-
chastic process, from

d

dt S ^c2&

^ċ2&

^cċ&
D 5S 0 0 2

2sV
2 t 0 22V0

2V0 1 0
D S ^c2&

^ċ2&

^cċ&
D ,

~50!

whereV0 andsV are, respectively, the mean and the vari-
ance ofV(t) above defined. By diagonalizing the matrix on
the right-hand side of~50! one finds two complex conjugate
eigenvalues and one real eigenvalue related to the evolution
of 1

2(^c
2&1^ċ2&). According to~49! the exponentl is half

the real eigenvalue. Simple algebra leads to the final expres-
sion

l~V0 ,sV ,t!5
1

2 S L2
4V0

3L D , ~51a!

L5F2sV
2 t1AS 4V0

3 D 31~2sV
2 t!2G1/3. ~51b!

All the quantitiesV0, sV , andt can be computed asstatic
averages. Therefore, within the validity limits of the assump-

tions made above, Eqs.~51! provide an analytic formula to
compute the largest Lyapunov exponent independently of the
numerical integration of the dynamics and of the tangent
dynamics.

1. Lyapunov exponent and Eisenhart metric

Let us consider dynamical systems described by the La-
grangian function~5! with a diagonal kinetic energy matrix,
i.e., ai j5d i j , and let us choose as ambient manifold the
enlarged configuration space-time equipped with the Eisen-
hart metric ~16!. Trivial algebra givesG00

i 5(]V/]qi) and
G0i
N115(2]V/]qi) as the only nonvanishing Christoffel co-

efficients and hence the Riemann curvature tensor has only
the nonvanishing components

R0i0 j5
]2V

]qi]qj
. ~52!

The JLC equation~20! is thus rewritten in local coordinates
as

¹

ds

¹

ds
J01Ri0 j

0 dqi

ds
J0
dqj

ds
1R0i j

0 dq0

ds
Ji
dqj

ds
50, ~53a!

¹

ds

¹

ds
Ji1R0 j0

i S dq0ds D 2Jj1R00j
i dq0

ds
J0
dqj

ds
1Rj00

i dqj

ds
J0
dq0

ds

50, ~53b!

¹

ds

¹

ds
JN111Ri0 j

N11dq
i

ds
J0
dqj

ds
1Ri j 0

N11 dq
i

ds
Jj
dq0

ds
50.

~53c!

As G i j
050 implies¹J0/ds5dJ0/ds and asRi jk

0 50, we find
that Eq.~53a! reads

d2J0

ds2
50; ~54!

henceJ0 does not accelerate and, without loss of generality,
we can set J̇0(0)5J0(0)50, yielding ~using
¹Ji /ds5dJi /ds1G0k

i q̇0Jk1Gk0
i q̇kJ0)

¹2Ji

ds2
5
d2Ji

ds2
. ~55!

Equation ~53b! gives, for the projection in configuration
space of the separation vector,

d2Ji

ds2
1

]2V

]qi]qk
S dq0ds D 2Jk50, i51, . . . ,N. ~56!

Equation ~53c! describes the passive evolution ofJN11,
which does not contribute the norm ofJ because
gN11N1150, so we can disregard it.

As already mentioned in Sec. II, along the physical geo-
desics ofgE , ds

25(dq0)25dt2; therefore Eq.~56! is ex-
actly the usual tangent dynamics equation reported in the
Introduction, provided that the obvious identification
j5(jq ,jp)[(J,J̇) is made. This clarifies the relationship
between the geometric description of the instability of a geo-

54 5975RIEMANNIAN THEORY OF HAMILTONIAN CHAOS AND . . .



desic flow and the conventional description of dynamical
instability. It has been recently shown@9,10# that the solu-
tions of Eqs.~56! and ~26! ~whereR is computed with Ja-
cobi metric! are strikingly close to one another in the case of
two degrees of freedom systems. This result is reasonable
because the geodesics of (M3R2,gE) which are natural mo-
tions, project themselves onto the geodesics of (M ,gJ), and
as the extra coordinatesq0 andqN11 do not contribute to the
instability of the geodesic flow, both local and global insta-
bility properties must be the same with either Jacobi or
Eisenhart metrics, independently ofN.

With the Eisenhart metric the only nonvanishing compo-
nent of the Ricci tensor isR005nV, wheren is the Euclid-
ean Laplacian in configuration space. Hence the Ricci curva-
ture is kR(q)5nV/(N21) ~remember that we choose the
constantC such thatds25dt2 along a physical geodesic!
and the stochastic processV(t) in ~42! is specified by

V05^kR&m5
1

N
^nV&m , ~57a!

s
V

25
1

N
^d2KR&m5

1

N
@^~nV!2&m2^nV&m

2 #, ~57b!

2t5
pAV0

2AV0~V01s
V
!1ps

V

. ~57c!

2. Averages of geometric quantities

Let us now sketch how to compute the mean and the
variance of any observable functionf (q), a geometric quan-
tity of the chosen ambient manifold, by means of the micro-
canonical measure~38!, i.e.,

^ f ~q!&m5
1

vE
E f ~q!d„H~q,p!2E…dqdp, ~58!

where

vE5E d~H~q,p!2E!dqdp ~59!

q5(q1•••qN), andp5(p1•••pN). By using the configura-
tional partition functionZC(b), given by

ZC~b!5E dqe2bV~q!, ~60!

wheredq5) i51
N dqi , we can compute the Gibbsian average

^ f &G of the observablef as

^ f &G5@ZC~b!#21E dq f~q!e2bV~q!. ~61!

Whenever this average is known, we can obtain the micro-
canonical average off @27# in the parametric form

^ f &m~«!→H ^ f &m~b!5^ f &G~b! ~62a!

«~b!5
1

2b
2
1

N

]

]b
@ lnZC~b!#. ~62b!

By replacingf with the explicit expression for Ricci curva-
turekR5(1/N)KR we can work outV0. Notice that Eq.~62a!
is strictly valid in the thermodynamic limit; at finiteN it is
^ f &m(b)5^ f &G(b)1O(1/N).

At variance with the computation of^ f &, which is insen-
sitive to the choice of the probability measure in theN→`
limit, computing the fluctuations of f , i.e., of
^d2f &5(1/N)k( f2^ f &)2l, by means of the canonical or mi-
crocanonical measures yields different results. The relation-
ship between the canonical, i.e., computed with the Gibbsian
weighte2bH, and the microcanonical fluctuations is given by
the well-known formula@27#

^d2f &m~«!5^d2f &G~b!2
b2

CV
F]^ f &G~b!

]b G2, ~63!

where

CV52
b2

N

]^E&
]b

~64!

is the specific heat at constant volume andb5b(«) is given
in implicit form by Eq.~62b!. By replacingf with kR we can
work outsV

2 .

IV. APPLICATIONS

In this section the Riemannian approach to Hamiltonian
chaos described above is practically used to computel1(«)
for two different models: the Fermi-Pasta-Ulam~FPU! b
model and a chain of coupled rotators. The choice of these
models is motivated by the possibility of analytically com-
puting, in theN→` limit, the geometric quantities needed
and by their interest as mentioned in the following subsec-
tions.

A. The Fermi-Pasta-Ulamb model

The FPUb model is defined by the Hamiltonian@25#

H~p,q!5(
i51

N
1
2 pi

21(
i51

N F 1
2 ~qi112qi !

21
m

4
~qi112qi !

4G .
~65!

This is a paradigmatic model of nonlinear classical many-
body systems that has been extensively studied over the past
decades and that stimulated remarkable developments in
nonlinear dynamics, one example is the discovery of soli-
tons. For a recent review we refer to@26#. Also the transition
between weak and strong chaos has been first discovered in
this model @3,4# and then the effort of understanding the
origin of such a threshold has stimulated the development of
the geometric theory presented here.

Let us now compute the average Ricci curvatureV0 and
its fluctuationss

V
. We have seen above that, using the

Eisenhart metric,k
R
is given by

kR5
1

N(
i51

N
]2V~q!

]qi
2 . ~66!

For the FPUb model this reads
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kR521
6m

N (
i51

N

~qi112qi !
2. ~67!

Note thatk
R
is always positive.

In order to compute the Gibbsian average ofk
R
and its

fluctuations, we rewrite the configurational partition function
as

Z̃C~a!5E
2`

1`

)
i51

N

dqiexpH 2b(
i51

N Fa

2
~qi112qi !

2

1
m

4
~qi112qi !

4G J , ~68!

which, in terms of the arbitrary parametera and ofZ
C
, is

expressed asZ̃C(a)5ZC(ab,m/a) and leads to the identity

^kR&~b!522
12m

bN

1

ZC
F ]

]a
Z̃C~a!G

a51

. ~69!

Thus we have to compute

1

NZC
F ]

]a
Z̃C~a!G

a51

5
1

N F ]

]a
lnZ̃C~a!G

a51

~70!

using

Z̃C~a!5@ z̃C~a!#Nf ~a!, ~71!

where f (a) is a quantityO(1), z̃C(a) is the single-particle
partition function@28#

z̃C~a!5GS 12D S bm

2 D 21/4

exp~ 1
4 a2u2!D21/2~au!, ~72!

G is the Euler function,D21/2 is a parabolic cylinder func-
tion, and

u5S b

2m D 1/2. ~73!

The final result in parametric form of the average Ricci
curvature of (M3R2,g

E
), with the constant energy con-

straint, is~details can be found in@6#!

V0~«!→5 ^kR&~u!521
3

u

D23/2~u!

D21/2~u!

«~u!5
1

8m F 3u2 1
1

u

D23/2~u!

D21/2~u!G .
~74!

Let us now compute

sV
2 ~«!5

1

N
^d2KR&

m
~«!5

1

N
Š~KR2^KR&!2‹

m
. ~75!

According to Eq.~63!, first the Gibbsian average of this
quantity,^d2kR&G(b)5(1/N)Š(KR2^KR&)2‹G(b), has to be
computed and then the correction term must be added. Now
define

Q5(
i51

N

~qi112qi !
2; ~76!

after Eq.~67!,

1

N
^d2KR&G~b!5

1

N
Š~KR2^KR&!2‹G5

36m2

N
Š~Q2^Q&!2‹G.

~77!

FIG. 1. Average Ricci curvaturêkR& vs en-
ergy density« for the FPU model: comparison
between analytic computation with Eq.~74!
~solid line! and the outcome of numerical simu-
lations ~time averages! with N5128 ~solid
circles! andN5512 ~solid squares!; m50.1.
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Hence, using Eq.~68!,

Š~Q2^Q&!2‹G5
4

b2 F ]2

]a2 lnZ̃C~a!G
a51

~78!

and finally

1

N
^d2KR&G5

144m2

b2 F ]2

]a2 lnz̃C~a!G
a51

. ~79!

Simple algebra gives

F ]2

]a2 lnz̃C~a!G
a51

5
u2

4 H 222u
D23/2~u!

D21/2~u!
2FD23/2~u!

D21/2~u!G
2J ,
~80!

so that from Eq.~79! we obtain

1

N
^d2KR&G~u!5

9

u2 H 222u
D23/2~u!

D21/2~u!
2FD23/2~u!

D21/2~u!G
2J .

~81!

According to the prescription of Eq.~63!, the final result for
the fluctuations of Ricci curvature is

sV
2 ~«!→5

1

N
^d2KR&

m
~u!5

1

N
^d2KR&G~u!2

b2

cV~u! S ]^kR&~u!

]b D 2

«~u!5
1

8m F 3u2 1
1

u

D23/2~u!

D21/2~u!G ,
~82!

where^d2KR&G(u) is given by~81!, the derivative part of the correction term is

]^kR&~u!

]b
5

3

8mu3
uD23/2

2 ~u!12~u221!D21/2~u!D23/2~u!22uD21/2
2 ~u!

D21/2
2 ~u!

, ~83!

and the specific heat per particlec
V
is found to be

c
V
~u!5

1

16D21/2
2 ~u!

$~1212u2!D21/2
2 ~u!

12uD21/2~u!D23/2~u!2u2D23/2~u!@2uD21/2~u!

1D23/2~u!#%. ~84!

The microcanonical averages in Eqs.~74! and~82! are com-
pared in Figs. 1 and 2 with their corresponding time averages
computed along numerical trajectories of the model~65! at
N5128 andN5512 withm50.1. The equations of motion

are integrated using a third-order bilateral symplectic algo-
rithm @29#, which is a high-precision numerical scheme.
Though microcanonical averages are computed in the ther-
modynamic limit, the agreement between time and ensemble
averages is excellent already atN5128.

Analytic result for l1„«… and its comparison
with numeric results

Now we use~74! and ~82! to computet according to its
definition in ~57c!. Then we substituteV0(«), sV

2 («), and
t(«) into Eq. ~51! to obtain the analytic prediction for
l1(«) in the limit N→`. In Fig. 3 this analytic result is
compared to the numeric values ofl1 computed by means of

FIG. 2. Fluctuation of Ricci curvature
^d2KR&/N vs energy density« for the FPU
model: comparison between analytic computation
with Eq. ~82! ~solid line! and numerical results.
Symbols and parameters are as in Fig. 1.
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the standard algorithm@30# at N5256 andN52000 with
m50.1 and at different«. The agreement between analytic
and numeric results is strikingly good.

B. Chain of coupled rotators

Let us now consider the system described by the Hamil-
tonian

H~p,q!5(
i51

N H pi22 1J@12cos~qi112qi !#J . ~85!

If the canonical coordinatesqi andpi are given the meaning
of angular coordinates and momenta, this Hamiltonian de-
scribes a linear chain ofN rotators constrained to rotate on a
plane and coupled by a nearest-neighbor interaction.

This model can be formally obtained by restricting to one
spatial dimension the classical Heisenberg model whose po-
tential energy isV52J(^ i , j &Si•Sj , where the sum is ex-
tended only over nearest-neighbor pairs,J is the coupling
constant, and eachSi has unit module and rotates on a plane.
To each ‘‘spin’’ Si5(cosqi ,sinqi) the velocity
(d/dt)Si5@2(dqi /dt)sinqi ,(dqi /dt)cosqi# is associated so

that ~85! follows fromH5( i51
N 1

2
Ṡi
22J(^ i , j &Si•Sj .

The Hamiltonian~85! has two integrable limits. In the
limit of vanishing energy it represents a chain of harmonic
oscillators

H~p,q!.(
i51

N H pi22 1J~qi112qi !
2J , ~86!

whereas in the limit of indefinitely growing energy a system
of freely rotating objects is found because of potential
boundedness.

The expression of Ricci curvatureKR , computed with
Eisenhart metric, is

KR5(
i51

N
]2V~q!

]qi
2 52J(

i51

N

cos~qi112qi !. ~87!

Let us observe that for this model a relation exists between
the potential energyV and Ricci curvatureKR :

V~q!5JN2
KR

2
. ~88!

This relation binds the fluctuating quantity that enters the
analytic formula forl1. This constraint does not exist for the
sectional curvature; thusa priori it may be expected that
some problem will arise.

The configurational partition function for a chain of
coupled rotators is

ZC~b!5E
2p

p

)
i51

N

dqiexpH 2b(
i51

N

J@12cos~qi112qi !#J
5exp~2bJN!E

2p

p

)
i51

N

dv iexpS bJ(
i51

N

cosv i D
5exp~2bJN!@ I 0~bJ!#N~2p!Ng~v̄ !, ~89!

whereI 0(x)5(1/p)*0
1pexcosudu is the modified Bessel func-

tion of index zero; v i5qi112qi , iP(1, . . . ,N21),
vN5q̄2qN , andq̄5v̄ depend on the initial conditions. The
functiong(v̄) contributes a term ofO(1/N), thus vanishing
the thermodynamic limit.

In order to computeV0 andsV
2 we follow the same pro-

cedure adopted for the FPU model, i.e., we define

Z̃C~a!5E
2p

1p

)
i51

N

dqiexpH 2b(
i51

N

@12acos~qi112qi !#J
5exp~2bJN!@ I 0~bJa!#Ng~v̄ !~2p!N, ~90!

and by observing that

^kR&
m
~b!5

2

Nb F ]

]a
lnZ̃C~a!G

a51

~91!

we findV0(«) in parametric form

FIG. 3. Lyapunov exponentl1 vs energy den-
sity « for the FPU model: comparison between
theoretical prediction of Eq.~51! ~solid line! and
numerical estimates atN5256 ~solid circles! and
N52000 ~solid squares!; m50.1.
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V0~«!→5 ^k
R
&

m
~b!52J

I 0~bJ!

I 1~bJ!

«~b!5
1

2b
1JS 12

I 1~bJ!

I 0~bJ! D .
~92!

In order to work out the average of the square fluctuations of
Ricci curvature we use the identity

1

N
^d2KR&G5

4

b2N F ]2

]a2 lnZ̃C~a!G
a51

, ~93!

whence

1

N
^d2KR&G54J2

bJI0
2~bJ!2I 1~bJ!I 0~bJ!2bJI1

2~bJ!

bJI0
2~bJ!

.

~94!

The computation of the correction term@]^kR&(b)/]b#2/
@]«(b)/]b# involves the derivatives

]«~b!

]b
52

1

2b
2J2H 12

1

bJ

I 1~bJ!

I 0~bJ!
2F I 1~bJ!

I 0~bJ!G
2J ,

~95!

]^kR&~b!

]b
52J2H 12

1

bJ

I 1~bJ!

I 0~bJ!
2F I 1~bJ!

I 0~bJ!G
2J . ~96!

Finally, putting together the different terms, we obtain

sV
2 ~«!→5

1

N
^d2KR&~b!5

4J

b

bJI0
2~bJ!2I 0~bJ!I 1~bJ!2bJI1

2~bJ!

I 0
2~bJ!@112~bJ!2#22bJI1~bJ!I 0~bJ!22@bJI1~bJ!#2

«~b!5
1

2b
1JF12

I 1~bJ!

I 0~bJ!G .
~97!

In Figs. 4 and 5 the comparison between analytic and nu-
meric results is provided for the average Ricci curvature and
its fluctuations. The agreement between ensemble and time
averages is very good. Time averages are computed along
numerical trajectories of the model Hamiltonian~85! at
N5150 andJ51. The already mentioned high-precision
symplectic algorithm has been used also in this case.

Analytic result for l1(«) and its comparison
with numeric results

By inserting into Eq.~51! the analytic expressions of
V0(«) and sV

2 («) given in Eqs.~92! and ~97!, and also
t(«) which is a function of the latter quantities, we find
l1(«). In Fig. 6 the comparison is given between the ana-
lytic result so obtained and the outcome of numeric compu-

tations performed with the standard algorithm@30#. Figure 6
shows that there is agreement between analytic and numeric
values of the largest Lyapunov exponent only at low- and
high-energy densities. Like the FPU case, at low energy, in
the quasiharmonic limit, we findl1(«)}«2. Whereas at high
energyl1(«)}«21/6, here l1(«) is a decreasing function
because at«→` the systems is integrable. In an intermedi-
ate energy range our theoretical prediction underestimates
the actual degree of chaos of the system. It is worth mention-
ing that this energy range coincides with a region of fully
developed~strong! chaos detected in this model by a com-
pletely different approach in Ref.@31#. In this case, as al-
ready mentioned above, there wasa priori a reason to expect
an inadequacy of the analytic prediction in some energy
range. In fact, using the Eisenhart metric, the explicit expres-

FIG. 4. Average Ricci curvaturêkR& vs energy density« for
the coupled rotators model: comparison between analytic computa-
tion with Eq. ~92! ~solid line! and the outcome of numerical simu-
lations ~time averages! with N5150 ~solid circles!; J51.

FIG. 5. Fluctuation of Ricci curvaturêd2KR&/N vs energy den-
sity « for the FPU model: comparison between analytic computa-
tion with Eq. ~97! ~solid line! and numerical results. Symbols and
parameters are as in Fig. 4.
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sion of the sectional curvatureK(v,j), relative to the plane
spanned by the velocity vectorv and a generic vectorj'v
~here we usej to denote the geodesic separation vector in
order to avoid confusion withJ, which is the notation for the
coupling constant!, is

K~v,j!5R0i0k

dq0

dt

j i

iji
dq0

dt

jk

iji [
]2V

]qi]qk
j ijk

iji2 ; ~98!

hence we get

K~v,j!5
J

iji2(i51

N

cos~qi112qi !@j i112j i #2 ~99!

for the coupled rotators model. We realize, by simple inspec-
tion of Eq. ~99!, thatK can take negative values with non-
vanishing probability regardless of the value of«, whereas,
as long as«,J, this possibility is lost in the replacement of
K by Ricci curvature that we adopted in our theory. In fact,
because of the constraint~88!, at each point of the manifold
it is

kR~«!>2~J2«!. ~100!

Thus our approximation fails in accounting for the presence
of negative sectional curvatures at small values of«. In Eq.
~99! the cosines have different and variable weights
@j i112j i #2 that in principle make it possible to find some-
where along a geodesicK,0 also with only one negative
cosine. This is not the case fork

R
, where all the cosines have

the same weight. Therefore the probability of findingK,0
along a geodesic must be related to the probability of finding
an angular difference greater thanp/2 between two nearest-
neighbor rotators. If the energy is sufficiently low this event
will be very unlikely, but we can guess that it will become
considerable where the theoretical prediction is not satisfac-
tory, i.e., when chaos is strong. Note that the frequent occur-
rence ofK,0 along a geodesic adds to parametric instability
another instability mechanism that enforces chaos@Eq. ~25!#.

Our strategy is to modify the model forK(s) in some
effectiveway that takes into account the mentioned difficulty

of kR(s) to adequately modelK(s). This will be achieved by
suitably ‘‘renormalizing’’ V0 or s

V
to obtain aneffective

Gaussian processfor the behavior of the sectional curvature.
From Eq. ~99! we see thatN directions of the vectorj

exist such that the sectional curvatures, relative to theN
planes spanned by these vectors together withv, are just
cos(qi112qi). Hence the probabilityP(«) of occurrence of a
negative value of the cosine is used to estimate the probabil-
ity of occurrence of negative sectional curvatures along the
geodesics. This probability function has the simple expres-
sion

P~«!5

E
2p

p

Q~2cosx!ebJcosxdx

E
2p

p

ebJcosxdx

5

E
p/2

3p/2

ebJcosxdx

2pI 0~bJ!
,

~101!

whereQ(x) is the Heaviside unit step function.
The functionP(«), reported in Fig. 7, begins to increase

at «.0.2, just where the analytic prediction in Fig. 6 begins
to fail, and when it approaches its asymptotic value of1

2,
around the end of the knee, good agreement is again found
between theory and numeric results. The simplest way to
account for the existence of negative sectional curvatures is
to shift the peak of the distributionP(dKR) toward the nega-
tive axis. This is achieved by the replacement

^kR~«!&→
^kR~«!&
11aP~«!

. ~102!

This correction neither has influence whenP(«).0 ~below
«.0.2) nor when P(«).1/2 @because in this case
^kR(«)&→0#. The value of the parametera in ~102! must be
estimateda posteriori in order to obtain the best agreement
between numerical and theoretical data over the whole range
of energies. The result shown in Fig. 8 is obtained with
a5150; no particularly fine tuning is necessary to obtain
very good agreement between theory and numerical experi-
ment.

FIG. 6. Lyapuov exponentl1 vs energy density« for the
coupled rotators model: comparison between theoretical prediction
of Eq. ~51! ~solid line! and numerical estimates atN5150 ~solid
circles!, N51000 ~solid diamonds!, andN51500 ~solid square!;
J51.

FIG. 7. Estimate of the probabilityP(«) of occurrence of nega-
tive sectional curvatures in the coupled rotators model according to
Eq. ~101!; J51.
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V. CONCLUDING REMARKS

This paper presents substantial progress along the lines of
the research initiated in Ref.@5#, where it was proposed to
tackle Hamiltonian chaos using the Riemannian geometriza-
tion of Newtonian dynamics. This work renewed an old in-
tuition that dates back to Krylov@11# that spawned new ideas
in abstract ergodic theory@12,16#, whereas it did not give
rise to any useful method to describe chaos in physical geo-
desic flows, despite many attempts and with remarkable ex-
ceptions@13,14#. The obstacle was always the same: in anal-
ogy with Anosov flows that exist on hyperbolic manifolds,
chaos has been invariably thought of as a consequence
mainly of negative scalar curvature. So the first obvious
check against any typical model that undergoes a stochastic
transition, say, the He´non-Heiles model, gives a puzzling
surprise: the scalar curvature of (M ,g

J
) is always positive

@9# independently of the energy value, i.e., of regular or cha-
otic behavior of the dynamics.

The difference of the approach started in Ref.@5# was to
conjugate theoretical arguments with numerical experiments
in order to shine some light on the following two points.~i!
Does the geometry of the ‘‘mechanical’’ manifolds contain,
though in some hidden way, the relevant information con-
cerning stability and instability of their geodesics? In the
affirmative case~ii ! how is the strength of chaos quantified
and how are the weakly and strongly chaotic regimes char-
acterized?

Actually positive answers to these questions have been
given in @5–10#, where, among other things, it has been
shown that if the geodesics feel a positive nonconstant cur-
vature of the underlying manifold thenparametric instability
can be activated. Though a rigorous proof is not yet at our
disposal, parametric instability appears as the source of
chaos on manifolds of positive nonconstant curvature.

In addition, we can mention that also in the case of inte-
grable systems, whose geodesics are therefore stable, the cur-
vature of the underlying manifold can be wildly fluctuating
along the geodesics, but in this case the parametric instability
mechanism is inactive. It is found that these integrable geo-
desic flows have very special hidden symmetries, mathemati-
cally defined through Killing tensor fields@32#, which make
them peculiar.

For geodesic flows on constant negative curvature mani-
folds, the instability exponent is known@Eq. ~25!#. If the
curvature is negative and nonconstant then simple averaging
algorithms can be devised, but what can we do with a posi-
tive and fluctuating curvature? The challenge now is to com-
pute the average instability exponent for geodesic flows of
physical relevance. This is a crucial test of the effectiveness
of the Riemannian theory of chaos with respect to the con-
ventional explanation based on homoclinic intersections.
Moreover, as no analytic method was available to compute
Lyapunov exponents, it was worth making an effort in this
direction.

Under reasonable hypotheses, which obviously restrict the
domain of validity of the analytic formula~51! for l1, this
paper provides analytic computations of the largest
Lyapunov exponent in dynamical systems described by ordi-
nary differential equations. Though several points need a
deeper understanding, we hope that our work convincingly

shows that this geometric approach is effective and useful,
thus deserving further improvements and developments.
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APPENDIX: SOLUTION OF THE STOCHASTIC
OSCILLATOR EQUATION

In the following we will briefly describe how to cope with
the stochastic oscillator problem that we encountered in Sec.
III B. The discussion follows closely Ref.@24#, where all the
details can be found.

A stochastic differential equation can be put in the general
form

F~x,V!50, ~A1!

where F is an assigned function and the variableV is a
random process, defined by a mean, a standard deviation,
and an autocorrelation function. A functionj(V) is a solu-
tion of this equation if for allVPj(V), F„j(V),V…50. If
Eq. ~A1! is linear of ordern, it is written as

u̇5A~ t,V!u, ~A2!

whereuPRn and A is a n3n matrix whose elements are
randomly dependent on time.

For the purposes of our work we are interested in studying
the evolution of the average carried over all the realizations
of the procesŝu(t)&. Let us consider the matrixA as the
sum

A~ t,V!5A0~ t !1aA1~ t,V! , ~A3!

FIG. 8. Lyapunov exponentl1 vs energy density« for the
coupled rotators model: comparison between theoretical prediction
and numerical estimates are as in Fig. 6, but here the average cur-
vature^kR& that enters Eq.~51! is corrected according to Eq.~102!
with a5150. Numerical values ofl1 are obtained atN5150 ~solid
circles!, at N51000 ~solid diamonds!, and at N51500 ~solid
square!.
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where the first term isV independent and the second one is
randomly fluctuating with zero mean. Let us also assume that
A0 is time independent. If the parametera, which deter-
mines the fluctuation amplitude, is small we can treat Eq.
~A2! by means of a perturbation expansion. It is convenient
to use the interaction picture; thus we set

u~ t !5exp~A0t !v~ t !, ~A4!

A1~ t !5exp~A0t !v~ t !exp~2A0t !. ~A5!

Formally one is led to a Dyson expansion for the solution
v(t). Then, returning to the previous variables and averaging,
the second-order approximation gives

d

dt
^u~ t !&5HA01a2E

2`

1`

^A1~ t !exp~A0t!A1~ t2t!&

3exp~2A0t!dtJ ^u~ t !&. ~A6!

Following the same procedure one can find also the evolu-
tion of the second moments~and by iterating also the evolu-
tion of higher moments!. In fact, with the components ofu
PRn we can maken2 quantitiesunum that obey the differ-
ential equation

d

dt
~unum!5(

k,l
Ãnm,kl~ t !~ukul!, ~A7!

where

Ãnm,kl5Ankdml1dnkAml . ~A8!

The above presented averaging method can be now applied
to this new equation.

Now, if we consider a random harmonic oscillator, Eq.
~A2! has the form

d

dt S xẋD 5S 0 1

2V 0D S xẋD , ~A9!

with the random squared frequencyV5V01s
V

h(t). In

particular, we are interested in working out the second mo-
ments equation when the processh(t) is Gaussian andd
correlated. Using Eq.~A8! one finds that

d

dt S x2

ẋ2

xẋ
D 5S 0 0 2

0 0 22V

2V 1 0
D S x2

ẋ2

xẋ
D 5AS x2

ẋ2

xẋ
D .

~A10!

Because of our assumptions for this system, Eq.~A6! is more
than a second-order approximation, it is exact. In fact, the
Dyson series can be written in compact form as

S ^x2~ t !&

^ẋ2~ t !&

^x~ t !ẋ~ t !&
D 5 dK expS E

0

t

A~ t8!dt8D L eS ^x2~0!&

^ ẋ2~0!&

^x~0!ẋ~0!&
D ,

~A11!

where the bracketsd e stand for a chronological product. Ac-
cording to Wick’s procedure we can rewrite Eq.~A11! as a
cumulant expansion, and when the cumulants of order higher
than the second vanish~as is the case of interest to us! one
can easily show that Eq.~A6! is exact.

Like in Eq. ~A3!, the matrixA splits as

A~ t !5A01s
V

h~ t !A1

5S 0 0 2

0 0 22V0

2V0 1 0
D 1s

V
h~ t !S 0 0 0

0 0 22

21 0 0
D ;

~A12!

therefore the equation for the averages becomes

d

dt S ^x2&

^ẋ2&

^xẋ&
D 5HA01sV

2 E
2`

1`

^h~ t !h~ t2t!&B~t!dtJ

3S ^x2&

^ẋ2&

^xẋ&
D , ~A13!

where B(t)5A1exp(A0t)A1exp(2A0t). As ^h(t)h(t
2t)&5td(t), with t a characteristic time scale of the pro-
cess, we obtain

d

dt S ^x2&

^ẋ2&

^xẋ&
D 5$A01sV

2 tB~0!%S ^x2&

^ẋ2&

^xẋ&
D . ~A14!

From the definition ofB(t) it follows that B(0)5A1
2; then

by easy calculations we find

A01sV
2 tA1

25S 0 0 2

2sV
2 t 0 22V0

2V0 1 0
D , ~A15!

which is the result used in Sec. III B.
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